Benchmarking Inception_V3

Analyzing the performance on any ML model is very crucial . while running ML model on device we need to know the performance of the ml model executed on the edge device . so that we can get  the performance metrices of the different layers of ML model and some other usefull insights of different runtimes



 Running Benchmarks for Inception_V3


Pre-requisite :
  • your_model.dlc 
  •   A text file listing all the input data. For an example, see: $SNPE_ROOT/models/alexnet/data/image_list.txt. 
  •   All the input data listed in the text file. For an example, see $SNPE_ROOT/models/alexnet/data/cropped.
$cd $SNPE_ROOT/benchmark  
$cp alexnet_sample.json inception_v3.json 
$vi inception_v3.json 
// modify the inception_v3.json parameters according to inception_v3 
{
  "Name":"inceptionV3", 
  "HostRootPath": "inception_v3",
  "HostResultsDir":"inception_v3/results",
  "DevicePath":"/data/local/tmp/snpeexample", 
  "Devices":["2d07d8f9"], 
  "HostName": "localhost", 
  "Runs":5,

"Model": { 
      "Name": "Inception_v3", 
      "Dlc": 
  "$SNPE_ROOT/models/inception_v3/dlc/inception_v3_quantized.dlc",
                 "InputList":
 "$SNPE_ROOT/models/inception_v3/data/target_raw_list.txt",
                     "Data": [
       "$SNPE_ROOT/models/inception_v3/data/cropped"
              ]
              }, 
     "Runtimes":["GPU", "CPU", "DSP"], 
     "Measurements": ["timing"] 
 }

 Run the benchmark for Inception_v3 

run the following command to run on the only device connected to your computer
  • $cd $SNPE_ROOT/benchmarks  
  • $python snpe_bench.py -c inception_v3.json  
View the results

A latest_results link that points to the most recent run is created.

 # In inception_v3.json, "HostResultDir" is set to "inception_v3/results"
  •  cd $SNPE_ROOT/benchmarks/inception_v3/results 
 # Notice the time stamped directories and the "latest_results" link. 
  •  cd $SNPE_ROOT/benchmarks/inception_v3/results/latest_results 
 # Notice the .csv file, open this file in a csv viewer (Excel, LibreOffice Calc) 













Comments

Popular posts from this blog

Examples of running Machine Learning Model on Device using Qualcomm AI HUB

Medical Report Analyzer - Progess

Running Inception_V3 using On-device AI